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Received 24 October 1988 

Abstract. We present two classes of particular exact solutions to the complex Lorenz 
equations. These solutions possess the Painlevt property. The parameter range for which 
the above solutions hold includes as special cases two of the three parameter ranges for 
which the general solution of the complex Lorenz equations has the Painlevt property. 

The complex Lorenz equations (CLE) proposed by Fowler, Gibbon and McGuinness 
[l-31 are 

x = " ( y  -x )  ( l a )  
y = rx - xz - ay 

i = -bz +;(x*y + xy*) 

the dot denoting differentiation with respect to time t. The parameters b, a, r, a are 
defined by 

b>O a > O  r = r l + i r 2  rl > 0 

r2 > 0 a = l - i e  e > 0 .  (2) 
The real Lorenz equations (RLE)  are recovered from ( la -c)  by setting r2 = e = 0 and 
considering real x(t) ,  y( t ) ,  since z ( t )  is in any case real. 

A PainlevC analysis of the CLE has been carried out [4-61 and it has been found 
that the general solution of the system (la-c) possesses the PainlevC property (only 
poles as movable singularities in the complex t plane) for 

(a) U = & ,  r ,=  e2/2 b = 1 r2 = e/2 e arbitrary (30) 

(b) U =  1 rl = e2/4+$ b = 2  r2=0 e arbitrary ( 3 b )  
( c) ( + = L  r1 = arbitrary b = 0 r2 - e e arbitrary. (3c) 

Very recently [6] Roekaerts has obtained by applying the REDUCE program DISSYS 

developed by Schwarz [7] all constants of the motion of ( la -c )  of the form 

F(x l ,x2 ,x3 ,x4 ,  z, t)=exp(c,t)P(xl,x2,x3,x4,z) (4) 

x = x, + ix, y = x3+ix4 (x l ,  x2,  x3, x4: real) ( 5 )  

where 

co is a constant depending on a, b, rl , r2, e, and P is a polynomial of at most fourth 
order in its arguments. The results concerning the RLE are regained by letting e = r2 = 0 
in (3a -c )  and (4). 
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In the present letter we proceed one step further and construct new exact particular 
solutions to the CLE. These solutions possess the PainlevC property and are valid for 
certain ranges of parameters a, b, r ,  , r2 and e > 0. The above parameter ranges include 
(3a-c). By a simple manipulation we obtain from ( l a - c )  

x +  (a+ a ) x +  a ( a  - r ) x  = - a x z  (6a)  

d ( x * x )  1 
Z + bz = /x i2  + ~ - 

d t  2 a  

y = a /  a + x. (6c) 

The systems ( l a - c )  and (6a-c) are equivalent. From (6b) we deduce 

C =constant. Let now C = 0 and 

b =20 .  

Owing to the choice C = 0 and equation (S), (7)  becomes 

z (  t )  = /x12/2a (9) 

and by virtue of ( 9 ) ,  (6a)  yields 

2 + (a + a ) x  + a( a - r ) x  = -xIxI2/2. 

We introduce the transformation 

x ( t )  = u ( O v ( t )  5 =  5 ( t )  U'([) = d u / d &  ( 1 1 )  

Transformation (1 1 )  is widely applicable in the theory of differential equations and 
appears also in the method of symmetry reduction [SI of partial differential equations. 
Thus (10) becomes with (= d[/dt: 

u r 1 i 2 u +  u'[.5+22j.zj + (U+ a ) & ] +  u [ i ; + ( a +  a)zj+ a ( a  - r ) v ]  = - u l ~ 1 ~ 1 u / ~ v / 2 .  (12) 

We now seek to determine ( ( t )  and u ( t )  such that 

gv + 2& + (a + a ) &  = 0 

i;+ (a+ a)C + a ( a  - r ) u  = 0 

(&,= 1vI2. 

After solving the system (13a) and (13b) we may satisfy (13c). A rather lengthy 
calculation yields that if the relations 

8(a+ 1 ) 2  - 9 e 2  
36a 

r , = l - -  
e(1 -a) 

r, = ___ 
2a 

a < l  9 e 2 + 2 0 a  - S a 2 -  8 > 0 (146) 

are valid, condition (14b) deriving from r l  > 0, r2 > 0, then 

((t)=--exp[-(a+ 3 l ) t /3]  v(  t = exp [ t (F- F) ] a + l  
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and (10) is transformed into 

U’Y5) = -U(5)l45)l2/2. (16) 
We distinguish two cases. 
Case (a ) .  ~ ( 5 )  = real. Equation (16) is immediately integrable in terms of the Jacobian 
elliptic function cn(5, a). In fact we get 

U( 5) = (4G) cn[ GI - [), a] (17) 
G, GI being positive constants. By virtue of (1 1) we may write 

x( t )  = (4G)’l4 exp [ t ($-?)I cn [ GI +- 3 exp[ -(v+ l) t /3]) ,  a] (18) 
a + l  

the functions y (  t ) ,  z( t )  being easily written down by means of (6c) and (9) respectively. 
We now make the following observations. 

( I )  The set of functions (x, y ,  z) determined through (6c), (9) and (18) comprises 
a particular exact solution of the system ( l a -c )  since it has only two constants of 
integration, G and GI,  instead of the necessary five, cf ( 5 ) .  The above solution holds 
provided (8), (14a) and (146) are fulfilled. 

(11) For e = 0 we regain from (14a) and (14b) and (18) the results for the RLE [9]. 
(111) To the best of our knowledge the only other particular exact solution of the 

CLE known up to now is the periodic solution [2] 

z( t )  = lAl2/ b 

(19) 

x( t )  = A exp(ift) 

f = u ( e + r 2 ) / ( v + 1 ) .  

The amplitude A of the above exact limit cycle solution equals b(r, - TIC), where rlc 
is given by (30) below. Thus solution (19) is valid for rl > rlc,  whereas our new exact 
solution holds for rl < rlc,  as (14a) shows. We conclude that the limit cycle solution 
(19) and the new damped oscillation found here never coexist. 

(IV) The elliptic function appearing in (18) has for complex t only simple poles 
as movable singularities. Therefore the PainlevC property of the solution (x, y ,  z )  in 
(I) above is established. A glance at (14a) and (14b) and b = 2 a  reveals that they 
include (3a) and (36) as special cases. 
Case (b). U( 5) = complex. Let 

4 5 )  = U I ( 5 )  + i U 2 ( 5 ) .  (20) 
Owing to (20), (16) becomes 

U ;  = - U , ( U : +  U3/2 

U; = - U 2 ( U : +  U3/2. 

The trivial solutions of the system (21a) and (21b), ( a )  ti, = 0 and (b )  u1 = u 2 ,  lead 
immediately, apart from an inessential phase factor, to precisely the same analytic 
form for x ( t )  as in (18). To find non-trivial analytic solutions of (21a) and (21b) we 
represent U , ,  u2 as 

U l ( 5 )  = r(5) cos P(5) 

cos p( 5)[ r” - ( cp’)2r + r3/2] -sin (p(5)[2r’(p’+ rp”] = o 
sin (p(5)[r”-((p’)2r+ r3/2]+cos p(5)[2r’(p‘+ r(p”] =o .  

U 2 ( 0  = r(5) sin (P(5). (22) 
On inserting (22) into (21a) and (216) we obtain 

(23) 
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Equations (23 )  are satisfied if 

Equation (24b)  yields 

cp' = c,/ r2 C3 =constant. ( 2 5 )  

Thus ( 2 4 u )  becomes 

Integration of (26)  gives (27 ) :  

The elliptic integral in (27 )  can be treated in a standard way. Since U([) is real, we 
must place restrictions on C , ,  C3 so that the polynomial - w 3  + 8C,w - 4C:  > 0. The 
respective algebraic investigation is easily carried out. Here we shall give the final 
result obtained by inverting the elliptic integral in (27)  

the constants a, b, with a - b > 0,  depending on C , ,  C3 and s n ( 0  being the Jacobian 
elliptic function. The angle ( ~ ( 8 )  can be determined by a quadrature from ( 2 5 ) ,  but it 
is of no  further importance since it is only a phase angle. By virtue of (1 l), (13, (20) ,  
(22)  and (28 )  then x(  t ) ,  y (  t )  and z (  t )  can be written down, for instance 

x(  t ) = exp [ t (g  - 9) + i cp ] 

Again, we obtain a damped oscillation which has a different analytic form than that 
in (18). 

We now summarise our results. 
(1) We have found two new classes of particular exact solutions of the CLE. Both 

( 2 )  According to Fowler et a1 [ 2 ]  r ,  is used as the bifurcation parameter and 
classes possess the Painlev6 property and  describe a damped oscillation. 

is its value at the stability limit. In our case (4.1) shows that r ,  < r lc ,  which implies 
that the origin x = y = z = 0 is stable. Clearly solutions (18) and (29 )  conform with 
that statement. 

(3) According to Yoshida [lo] the Hamiltonian 

H =  ( P : + P : ) / 2 + ( 4 : + 4 ~ ) / 4 + & 4 : 4 : / 2  (31) 
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with equations of motion 

is integrable only for E =0,1,3.  The system of (32a) and (32b) goes over into the 
system (21a) and (21b) for E = 1, q1 = u , / f i ,  q 2 =  u z / f i .  A byproduct of the present 
work, therefore, is the exact analytic solution of (32a) and (32b) for E = 1, i.e. for one 
of the three integrable cases of the Hamiltonian (31). 

The author acknowledges stimulating discussions with Haruo Yoshida. 
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